1. (30%) The height of an ocean wave is described by the function

$$
y(x, t)=1.5 \sin (0.5 t-0.6 x)(\mathrm{m}) .
$$

Determine the phase velocity (10%) and the wavelength (10%), and then sketch $y(x, t)$ at $t=$ 2 s over the range from $x=0$ to $x=2 \lambda$.

Solution: The given wave may be rewritten as a cosine function:

$$
y(x, t)=1.5 \cos (0.5 t-0.6 x-\pi / 2)
$$

By comparison of this wave with Eq. (1.32),

$$
y(x, t)=A \cos \left(\omega t-\beta x+\phi_{0}\right),
$$

we deduce that

$$
\begin{aligned}
\omega=2 \pi f=0.5 \mathrm{rad} / \mathrm{s}, & \beta=\frac{2 \pi}{\lambda}=0.6 \mathrm{rad} / \mathrm{m} \\
10 \% & u_{\mathrm{p}}=\frac{\omega}{\beta}=\frac{0.5}{0.6}=0.83 \mathrm{~m} / \mathrm{s}, \\
& \lambda=\frac{2 \pi}{\beta}=\frac{2 \pi}{0.6}=10.47 \mathrm{~m}
\end{aligned}
$$

At $t=2 \mathrm{~s}, y(x, 2)=1.5 \sin (1-0.6 x)(\mathrm{m})$, with the argument of the cosine function given in radians. Plot is shown in Fig. .

Figure P1.6: Plot of $y(x, 2)$ versus x.
2. (30%) An air spaced lossless $50-\Omega$ line $\left(\varepsilon_{\mathrm{r}}=1\right)$ is terminated in a load with impedance of $\mathrm{Z}_{\mathrm{L}}=60+\mathrm{j} 60-\Omega$ at frequency 5 GHz , Find (1) the reflection coefficient (10\%); (2) the voltage standing wave ratio $(\mathrm{S})(10 \%)$ and (3) the location of the first voltage maximum from the load in centimeters (10%).

Solution:
(1) $\Gamma=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}=\frac{60+j 60-50}{60+j 60+50}=0.49 \angle 0.91 .5 \%$
(2) $S=\frac{1+|\Gamma|}{1-|\Gamma|}=\frac{1+0.49}{1-0.49}=2.9 .5 \%$
(3) $l_{\max }=\frac{\theta_{r}}{4 \pi} \lambda=0.072 \lambda$.

$$
\lambda=\frac{c}{f}=\frac{3 \times 10^{8} \mathrm{~m} / \mathrm{s}}{5 \times 10^{9} \mathrm{~Hz}}=6 \mathrm{~cm}
$$

$$
l_{\max }=0.43 \mathrm{~cm} . \quad 59
$$

2. (30\%) An air spaced lossless $50-\Omega$ line $\left(\varepsilon_{\mathrm{r}}=1\right)$ is terminated in a load with impedance of $\mathrm{Z}_{\mathrm{L}}=60+\mathrm{j} 60-\Omega$ at frequency 5 GHz , Find (1) the reflection coefficient (10\%); (2) the voltage standing wave ratio $(\mathrm{S})(10 \%)$ and (3) the location of the first voltage maximum from the load in centimeters (10%).

Solution:
(1) $\Gamma=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}=\frac{60+j 60-50}{60+j 60+50}=0.49 \angle 0.91 .5 \%$
(2) $S=\frac{1+|\Gamma|}{1-|\Gamma|}=\frac{1+0.49}{1-0.49}=2.969$
(3) $l_{\max }=\frac{\theta_{r}}{4 \pi} \lambda=0.072 \lambda$.
$\lambda=\frac{c}{f}=\frac{3 \times 10^{8} \mathrm{~m} / \mathrm{s}}{5 \times 10^{9} \mathrm{~Hz}}=6 \mathrm{~cm}$
$l_{\max }=0.43 \mathrm{~cm} . \quad 59$

